Basically a binary tree can be build using a single type of object, which has two (or three) fields: left and right (and parent). The parent field is optional, but it makes traversing the tree upward quite easy.
: : any one know a lot of this topic help me..... : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : Basically a binary tree can be build using a single type of object, : which has two (or three) fields: left and right (and parent). The : parent field is optional, but it makes traversing the tree upward : quite easy.
: : : any one know a lot of this topic help me..... : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : Basically a binary tree can be build using a single type of object, : : which has two (or three) fields: left and right (and parent). The : : parent field is optional, but it makes traversing the tree upward : : quite easy. : : thanks pal.... it helps! :
: : : : any one know a lot of this topic help me..... : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : : : Basically a binary tree can be build using a single type of object, : : : which has two (or three) fields: left and right (and parent). The : : : parent field is optional, but it makes traversing the tree upward : : : quite easy. : : : : thanks pal.... it helps! : : : : i read it but dont read how to delete a node. : Here's how to insert and delete a node: http://en.wikipedia.org/wiki/Binary_search_tree
: : : : : any one know a lot of this topic help me..... : : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : : : : : Basically a binary tree can be build using a single type of object, : : : : which has two (or three) fields: left and right (and parent). The : : : : parent field is optional, but it makes traversing the tree upward : : : : quite easy. : : : : : : thanks pal.... it helps! : : : : : : : i read it but dont read how to delete a node. : : : Here's how to insert and delete a node: : http://en.wikipedia.org/wiki/Binary_search_tree
: : : : : : any one know a lot of this topic help me..... : : : : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : : : : : : : Basically a binary tree can be build using a single type of object, : : : : : which has two (or three) fields: left and right (and parent). The : : : : : parent field is optional, but it makes traversing the tree upward : : : : : quite easy. : : : : : : : : thanks pal.... it helps! : : : :
finding mid and the max? : : : : : : i read it but dont read how to delete a node. : : : : : Here's how to insert and delete a node: : : http://en.wikipedia.org/wiki/Binary_search_tree : : : : nice thanks pal. :
: : : : : : any one know a lot of this topic help me..... : : : : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : : : : : : : Basically a binary tree can be build using a single type of object, : : : : : which has two (or three) fields: left and right (and parent). The : : : : : parent field is optional, but it makes traversing the tree upward : : : : : quite easy. : : : : : : : : thanks pal.... it helps! : : : :
finding mid and the max? : : : : : : i read it but dont read how to delete a node. : : : : : Here's how to insert and delete a node: : : http://en.wikipedia.org/wiki/Binary_search_tree : : : : nice thanks pal. :
: : : : : : : any one know a lot of this topic help me..... : : : : : : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : : : : : : : : : Basically a binary tree can be build using a single type of object, : : : : : : which has two (or three) fields: left and right (and parent). The : : : : : : parent field is optional, but it makes traversing the tree upward : : : : : : quite easy. : : : : : : : : : : thanks pal.... it helps! : : : : : : : finding mid and the max? : : : : : : : : i read it but dont read how to delete a node. : : : : : : : Here's how to insert and delete a node: : : : http://en.wikipedia.org/wiki/Binary_search_tree : : : : : : : : nice thanks pal. : : : : Finding the maximum and minimum is quite simple: Based on the text of the wikipedia: - Maximum is the right-most node - Maximum is the left-most node If the tree is balanced, then the middle is always the root, but for an unbalanced tree, it is easier to restructure it to a list. If you don't want to restructure the tree, then you can use the following steps: - First determine the middle value based on minimum and maximum - Then traverse the tree until you find the node closest to the projected middle.
: : : : : : : : any one know a lot of this topic help me..... : : : : : : : : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : : : : : : : : : : : Basically a binary tree can be build using a single type of object, : : : : : : : which has two (or three) fields: left and right (and parent). The : : : : : : : parent field is optional, but it makes traversing the tree upward : : : : : : : quite easy. : : : : : : : : : : : : thanks pal.... it helps! : : : : : : : : : : finding mid and the max? : : : : : : : : : : i read it but dont read how to delete a node. : : : : : : : : : Here's how to insert and delete a node: : : : : http://en.wikipedia.org/wiki/Binary_search_tree : : : : : : : : : : : : nice thanks pal. : : : : : : : : Finding the maximum and minimum is quite simple: : Based on the text of the wikipedia: : - Maximum is the right-most node : - Maximum is the left-most node : If the tree is balanced, then the middle is always the root, but for : an unbalanced tree, it is easier to restructure it to a list. : If you don't want to restructure the tree, then you can use the : following steps: : - First determine the middle value based on minimum and maximum : - Then traverse the tree until you find the node closest to the : projected middle.
- Maximum is the right-most node : - Maximum is the left-most node <-----left or right??????
so you meant to say that we can make prog like this.. if(>right-most node>max) max = right-most node; System.out.println(max);
: : : : : : : : : any one know a lot of this topic help me..... : : : : : : : : : : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : : : : : : : : : : : : : Basically a binary tree can be build using a single type of object, : : : : : : : : which has two (or three) fields: left and right (and parent). The : : : : : : : : parent field is optional, but it makes traversing the tree upward : : : : : : : : quite easy. : : : : : : : : : : : : : : thanks pal.... it helps! : : : : : : : : : : : : : finding mid and the max? : : : : : : : : : : : : i read it but dont read how to delete a node. : : : : : : : : : : : Here's how to insert and delete a node: : : : : : http://en.wikipedia.org/wiki/Binary_search_tree : : : : : : : : : : : : : : : : nice thanks pal. : : : : : : : : : : : : Finding the maximum and minimum is quite simple: : : Based on the text of the wikipedia: : : - Maximum is the right-most node : : - Maximum is the left-most node : : If the tree is balanced, then the middle is always the root, but for : : an unbalanced tree, it is easier to restructure it to a list. : : If you don't want to restructure the tree, then you can use the : : following steps: : : - First determine the middle value based on minimum and maximum : : - Then traverse the tree until you find the node closest to the : : projected middle. : : : : : : : - Maximum is the right-most node : : - Maximum is the left-most node <-----left or right?????? - Sorry, my mistake: minimum is the left most node. : : so you meant to say that we can make prog like this.. if(>right-most : node>max) : max = right-most node; : System.out.println(max); : : That's not necessary, because a binary tree already has the maximum value at the right. Thus this code gives the maximum of the tree: [code] current = root; while (current.right != null) current = current.right; System.out.println(current.value); [/code] The same for the minimum (change right with left). If you look at this http://en.wikipedia.org/wiki/Image:Binary_search_tree.svg and run the code, then you will end up at the 14 node.
: : : : : : : : : : any one know a lot of this topic help me..... : : : : : : : : : : : : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : : : : : : : : : : : : : : : Basically a binary tree can be build using a single type of object, : : : : : : : : : which has two (or three) fields: left and right (and parent). The : : : : : : : : : parent field is optional, but it makes traversing the tree upward : : : : : : : : : quite easy. : : : : : : : : : : : : : : : : thanks pal.... it helps! : : : : : : : : : : : : : : : : finding mid and the max? : : : : : : : : : : : : : : i read it but dont read how to delete a node. : : : : : : : : : : : : : Here's how to insert and delete a node: : : : : : : http://en.wikipedia.org/wiki/Binary_search_tree : : : : : : : : : : : : : : : : : : : : nice thanks pal. : : : : : : : : : : : : : : : : Finding the maximum and minimum is quite simple: : : : Based on the text of the wikipedia: : : : - Maximum is the right-most node : : : - Maximum is the left-most node : : : If the tree is balanced, then the middle is always the root, but for : : : an unbalanced tree, it is easier to restructure it to a list. : : : If you don't want to restructure the tree, then you can use the : : : following steps: : : : - First determine the middle value based on minimum and maximum : : : - Then traverse the tree until you find the node closest to the : : : projected middle. : : : : : : : : : : : : : : - Maximum is the right-most node : : : - Maximum is the left-most node <-----left or right?????? : - Sorry, my mistake: minimum is the left most node. : : : : so you meant to say that we can make prog like this.. if(>right-most : : node>max) : : max = right-most node; : : System.out.println(max); : : : : : That's not necessary, because a binary tree already has the maximum : value at the right. Thus this code gives the maximum of the tree: : [code]: : current = root; : while (current.right != null) : current = current.right; : System.out.println(current.value); : [/code]: : The same for the minimum (change right with left). : If you look at this : http://en.wikipedia.org/wiki/Image:Binary_search_tree.svg : and run the code, then you will end up at the 14 node.
: : : : : : : : : : any one know a lot of this topic help me..... : : : : : : : : : : : : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree : : : : : : : : : : : : : : : : : : Basically a binary tree can be build using a single type of object, : : : : : : : : : which has two (or three) fields: left and right (and parent). The : : : : : : : : : parent field is optional, but it makes traversing the tree upward : : : : : : : : : quite easy. : : : : : : : : : : : : : : : : thanks pal.... it helps! : : : : : : : : : : : : : : : : finding mid and the max? : : : : : : : : : : : : : : i read it but dont read how to delete a node. : : : : : : : : : : : : : Here's how to insert and delete a node: : : : : : : http://en.wikipedia.org/wiki/Binary_search_tree : : : : : : : : : : : : : : : : : : : : nice thanks pal. : : : : : : : : : : : : : : : : Finding the maximum and minimum is quite simple: : : : Based on the text of the wikipedia: : : : - Maximum is the right-most node : : : - Maximum is the left-most node : : : If the tree is balanced, then the middle is always the root, but for : : : an unbalanced tree, it is easier to restructure it to a list. : : : If you don't want to restructure the tree, then you can use the : : : following steps: : : : - First determine the middle value based on minimum and maximum : : : - Then traverse the tree until you find the node closest to the : : : projected middle. : : : : : : : : : : : : : : - Maximum is the right-most node : : : - Maximum is the left-most node <-----left or right?????? : - Sorry, my mistake: minimum is the left most node. : : : : so you meant to say that we can make prog like this.. if(>right-most : : node>max) : : max = right-most node; : : System.out.println(max); : : : : : That's not necessary, because a binary tree already has the maximum : value at the right. Thus this code gives the maximum of the tree: : [code]: : current = root; : while (current.right != null) : current = current.right; : System.out.println(current.value); : [/code]: : The same for the minimum (change right with left). : If you look at this : http://en.wikipedia.org/wiki/Image:Binary_search_tree.svg : and run the code, then you will end up at the 14 node.
Comments
:
Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
Basically a binary tree can be build using a single type of object, which has two (or three) fields: left and right (and parent). The parent field is optional, but it makes traversing the tree upward quite easy.
: :
: Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
:
: Basically a binary tree can be build using a single type of object,
: which has two (or three) fields: left and right (and parent). The
: parent field is optional, but it makes traversing the tree upward
: quite easy.
thanks pal.... it helps!
: : :
: : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: :
: : Basically a binary tree can be build using a single type of object,
: : which has two (or three) fields: left and right (and parent). The
: : parent field is optional, but it makes traversing the tree upward
: : quite easy.
:
: thanks pal.... it helps!
:
i read it but dont read how to delete a node.
: : : :
: : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: : :
: : : Basically a binary tree can be build using a single type of object,
: : : which has two (or three) fields: left and right (and parent). The
: : : parent field is optional, but it makes traversing the tree upward
: : : quite easy.
: :
: : thanks pal.... it helps!
: :
:
: i read it but dont read how to delete a node.
:
Here's how to insert and delete a node:
http://en.wikipedia.org/wiki/Binary_search_tree
: : : : :
: : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: : : :
: : : : Basically a binary tree can be build using a single type of object,
: : : : which has two (or three) fields: left and right (and parent). The
: : : : parent field is optional, but it makes traversing the tree upward
: : : : quite easy.
: : :
: : : thanks pal.... it helps!
: : :
: :
: : i read it but dont read how to delete a node.
: :
: Here's how to insert and delete a node:
: http://en.wikipedia.org/wiki/Binary_search_tree
nice thanks pal.
: : : : : :
: : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: : : : :
: : : : : Basically a binary tree can be build using a single type of object,
: : : : : which has two (or three) fields: left and right (and parent). The
: : : : : parent field is optional, but it makes traversing the tree upward
: : : : : quite easy.
: : : :
: : : : thanks pal.... it helps!
: : : :
finding mid and the max?
: : :
: : : i read it but dont read how to delete a node.
: : :
: : Here's how to insert and delete a node:
: : http://en.wikipedia.org/wiki/Binary_search_tree
:
:
:
: nice thanks pal.
:
: : : : : :
: : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: : : : :
: : : : : Basically a binary tree can be build using a single type of object,
: : : : : which has two (or three) fields: left and right (and parent). The
: : : : : parent field is optional, but it makes traversing the tree upward
: : : : : quite easy.
: : : :
: : : : thanks pal.... it helps!
: : : :
finding mid and the max?
: : :
: : : i read it but dont read how to delete a node.
: : :
: : Here's how to insert and delete a node:
: : http://en.wikipedia.org/wiki/Binary_search_tree
:
:
:
: nice thanks pal.
:
: : : : : : :
: : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: : : : : :
: : : : : : Basically a binary tree can be build using a single type of object,
: : : : : : which has two (or three) fields: left and right (and parent). The
: : : : : : parent field is optional, but it makes traversing the tree upward
: : : : : : quite easy.
: : : : :
: : : : : thanks pal.... it helps!
: : : : :
:
: finding mid and the max?
: : : :
: : : : i read it but dont read how to delete a node.
: : : :
: : : Here's how to insert and delete a node:
: : : http://en.wikipedia.org/wiki/Binary_search_tree
: :
: :
: :
: : nice thanks pal.
: :
:
:
Finding the maximum and minimum is quite simple:
Based on the text of the wikipedia:
- Maximum is the right-most node
- Maximum is the left-most node
If the tree is balanced, then the middle is always the root, but for an unbalanced tree, it is easier to restructure it to a list.
If you don't want to restructure the tree, then you can use the following steps:
- First determine the middle value based on minimum and maximum
- Then traverse the tree until you find the node closest to the projected middle.
: : : : : : : :
: : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: : : : : : :
: : : : : : : Basically a binary tree can be build using a single type of object,
: : : : : : : which has two (or three) fields: left and right (and parent). The
: : : : : : : parent field is optional, but it makes traversing the tree upward
: : : : : : : quite easy.
: : : : : :
: : : : : : thanks pal.... it helps!
: : : : : :
: :
: : finding mid and the max?
: : : : :
: : : : : i read it but dont read how to delete a node.
: : : : :
: : : : Here's how to insert and delete a node:
: : : : http://en.wikipedia.org/wiki/Binary_search_tree
: : :
: : :
: : :
: : : nice thanks pal.
: : :
: :
: :
: Finding the maximum and minimum is quite simple:
: Based on the text of the wikipedia:
: - Maximum is the right-most node
: - Maximum is the left-most node
: If the tree is balanced, then the middle is always the root, but for
: an unbalanced tree, it is easier to restructure it to a list.
: If you don't want to restructure the tree, then you can use the
: following steps:
: - First determine the middle value based on minimum and maximum
: - Then traverse the tree until you find the node closest to the
: projected middle.
- Maximum is the right-most node
: - Maximum is the left-most node <-----left or right??????
so you meant to say that we can make prog like this.. if(>right-most node>max)
max = right-most node;
System.out.println(max);
: : : : : : : : :
: : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: : : : : : : :
: : : : : : : : Basically a binary tree can be build using a single type of object,
: : : : : : : : which has two (or three) fields: left and right (and parent). The
: : : : : : : : parent field is optional, but it makes traversing the tree upward
: : : : : : : : quite easy.
: : : : : : :
: : : : : : : thanks pal.... it helps!
: : : : : : :
: : :
: : : finding mid and the max?
: : : : : :
: : : : : : i read it but dont read how to delete a node.
: : : : : :
: : : : : Here's how to insert and delete a node:
: : : : : http://en.wikipedia.org/wiki/Binary_search_tree
: : : :
: : : :
: : : :
: : : : nice thanks pal.
: : : :
: : :
: : :
: : Finding the maximum and minimum is quite simple:
: : Based on the text of the wikipedia:
: : - Maximum is the right-most node
: : - Maximum is the left-most node
: : If the tree is balanced, then the middle is always the root, but for
: : an unbalanced tree, it is easier to restructure it to a list.
: : If you don't want to restructure the tree, then you can use the
: : following steps:
: : - First determine the middle value based on minimum and maximum
: : - Then traverse the tree until you find the node closest to the
: : projected middle.
:
:
:
:
:
:
: - Maximum is the right-most node
: : - Maximum is the left-most node <-----left or right??????
- Sorry, my mistake: minimum is the left most node.
:
: so you meant to say that we can make prog like this.. if(>right-most
: node>max)
: max = right-most node;
: System.out.println(max);
:
:
That's not necessary, because a binary tree already has the maximum value at the right. Thus this code gives the maximum of the tree:
[code]
current = root;
while (current.right != null)
current = current.right;
System.out.println(current.value);
[/code]
The same for the minimum (change right with left).
If you look at this
http://en.wikipedia.org/wiki/Image:Binary_search_tree.svg
and run the code, then you will end up at the 14 node.
: : : : : : : : : :
: : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: : : : : : : : :
: : : : : : : : : Basically a binary tree can be build using a single type of object,
: : : : : : : : : which has two (or three) fields: left and right (and parent). The
: : : : : : : : : parent field is optional, but it makes traversing the tree upward
: : : : : : : : : quite easy.
: : : : : : : :
: : : : : : : : thanks pal.... it helps!
: : : : : : : :
: : : :
: : : : finding mid and the max?
: : : : : : :
: : : : : : : i read it but dont read how to delete a node.
: : : : : : :
: : : : : : Here's how to insert and delete a node:
: : : : : : http://en.wikipedia.org/wiki/Binary_search_tree
: : : : :
: : : : :
: : : : :
: : : : : nice thanks pal.
: : : : :
: : : :
: : : :
: : : Finding the maximum and minimum is quite simple:
: : : Based on the text of the wikipedia:
: : : - Maximum is the right-most node
: : : - Maximum is the left-most node
: : : If the tree is balanced, then the middle is always the root, but for
: : : an unbalanced tree, it is easier to restructure it to a list.
: : : If you don't want to restructure the tree, then you can use the
: : : following steps:
: : : - First determine the middle value based on minimum and maximum
: : : - Then traverse the tree until you find the node closest to the
: : : projected middle.
: :
: :
: :
: :
: :
: :
: : - Maximum is the right-most node
: : : - Maximum is the left-most node <-----left or right??????
: - Sorry, my mistake: minimum is the left most node.
: :
: : so you meant to say that we can make prog like this.. if(>right-most
: : node>max)
: : max = right-most node;
: : System.out.println(max);
: :
: :
: That's not necessary, because a binary tree already has the maximum
: value at the right. Thus this code gives the maximum of the tree:
: [code]:
: current = root;
: while (current.right != null)
: current = current.right;
: System.out.println(current.value);
: [/code]:
: The same for the minimum (change right with left).
: If you look at this
: http://en.wikipedia.org/wiki/Image:Binary_search_tree.svg
: and run the code, then you will end up at the 14 node.
ok ill try that one
: : : : : : : : : :
: : : : : : : : : Here's a good explanation: http://en.wikipedia.org/wiki/Binary_tree
: : : : : : : : :
: : : : : : : : : Basically a binary tree can be build using a single type of object,
: : : : : : : : : which has two (or three) fields: left and right (and parent). The
: : : : : : : : : parent field is optional, but it makes traversing the tree upward
: : : : : : : : : quite easy.
: : : : : : : :
: : : : : : : : thanks pal.... it helps!
: : : : : : : :
: : : :
: : : : finding mid and the max?
: : : : : : :
: : : : : : : i read it but dont read how to delete a node.
: : : : : : :
: : : : : : Here's how to insert and delete a node:
: : : : : : http://en.wikipedia.org/wiki/Binary_search_tree
: : : : :
: : : : :
: : : : :
: : : : : nice thanks pal.
: : : : :
: : : :
: : : :
: : : Finding the maximum and minimum is quite simple:
: : : Based on the text of the wikipedia:
: : : - Maximum is the right-most node
: : : - Maximum is the left-most node
: : : If the tree is balanced, then the middle is always the root, but for
: : : an unbalanced tree, it is easier to restructure it to a list.
: : : If you don't want to restructure the tree, then you can use the
: : : following steps:
: : : - First determine the middle value based on minimum and maximum
: : : - Then traverse the tree until you find the node closest to the
: : : projected middle.
: :
: :
: :
: :
: :
: :
: : - Maximum is the right-most node
: : : - Maximum is the left-most node <-----left or right??????
: - Sorry, my mistake: minimum is the left most node.
: :
: : so you meant to say that we can make prog like this.. if(>right-most
: : node>max)
: : max = right-most node;
: : System.out.println(max);
: :
: :
: That's not necessary, because a binary tree already has the maximum
: value at the right. Thus this code gives the maximum of the tree:
: [code]:
: current = root;
: while (current.right != null)
: current = current.right;
: System.out.println(current.value);
: [/code]:
: The same for the minimum (change right with left).
: If you look at this
: http://en.wikipedia.org/wiki/Image:Binary_search_tree.svg
: and run the code, then you will end up at the 14 node.
ok ill try that one